Advances in Brown Coal Power Generation

1924 to 1938	Yallourn A & B Power Stations	6 - 10 MW Chain Grate Boilers (22 units totalling 175 MW)
1954 to 1958	Yallourn C&D and Morwell Stations	6 x 20 MW Pulverized Fuel (PF) Boilers with mill/drying in recycled flue gas from the furnace
1961	Yallourn E	2 x120 MW PF Boilers with mill/drying
1964	Hazelwood	8 x 200 MW PF Boilers with mill drying
1973	Yallourn W Station	2 x 350 & 2 x 375 MW PF Boilers with separation firing
1985 to 1996	Loy Yang A Loy Yang B	4 x 500 MW PF Boilers with separation firing 2 x 500 MW units of same design
1997	HRL	10 MW Integrated Drying Gasification Combined Cycle (IDGCC) Development Facility
2015	CSIRO	DICE trials in 8 kW diesel engine – 1 MW trial proposed

Yallourn A to E Power Stations commenced 1924, completed 1961

A&B 175 MW total from 22 chain grate fired boilersC&D 6x20 MW each, pf boilers with mill/dryingE 2x120 MW

Hazelwood Power Station commenced 1964, completed 1971

8 x 200 MW units

Yallourn W Power Station commenced 1973, completed 1982

2 x 350 MW units and 2 x 375 MW units first boilers with separation firing

Integrated Mill/Drying System with Separation Firing

Loy Yang A & B Power Stations commenced 1984, completed 1996

Loy Yang B 2 x 500 MW units Loy Yang A 4 x 500 MW units

Scale up of Brown Coal PF Boilers

Note: Only Hazelwood, Yallourn W and Loy Yang are still operating. No new brown coal plant since 1996.

Issues in Brown Coal Power Generation

- Conventional thermal power generation on Victorian brown coal achieves 29% efficiency (HHV basis). Up to 25% of the coal is required to evaporate the coal moisture leading to CO₂ emissions about 33% higher than a typical black coal power station.
- If brown coal is to continue to provide base load power, major technology advances are needed to reduce emissions, probably coupled with CCS.
- Germany is focusing on advanced steam cycles and economies of scale to reduce its brown coal emissions. 1,000 MW Super Critical steam units and other improvements, can give efficiency gains of 6-8%.
- Victoria has concentrated on advanced combined cycle systems, such as IDGCC, to raise HHV efficiencies >40%
- DICE has the potential to increase efficiencies to over 50%
- CCS is being investigated in Victoria with post combustion capture trials at Loy Yang and Hazelwood, storage trials in the Otway Basin, and studies to prioritise the many potential storage sites in the Gippsland Basin through CarbonNet.

HRL's Integrated Drying Gasification Combined Cycle

□Proven at 10 MW scale with power supplied to grid Includes pressurised entrained flow drying using hot product gas □ 30% increase in efficiency \Box 30% lower CO₂ emissions □50% lower water use (compared with current best LV plant) Government support \$150 m □ Proposed 2x300 MW plant cannnot proceed until 600 MW of existing plant closes

HRL's IDGCC Process

DICE - Direct Injection Coal Engine

8 kw diesel engine test

Micronised brown coal slurry fuel

Other Commercial Plants

1924 - 1971	Yallourn Briquette Factory	700,000 t/yr briquettes
1956 - 1970	Lurgi Briquette Gasification Plant (Gas & Fuel Corporation) Morwell	700,000 m ³ /day town gas
1959 - 2014	Morwell Briquette & Power Complex	1.2 Mt/yr briquettes & 170 MW Cogen power station (8 x 25 MW)
1970 - 2014	Briquette carbonisation plant (Australian Char P/L) Morwell	80 kt/yr char from 180 kt briquettes
1992 - 2003	WTA Steam Fluidised Bed Drying Plant (Lurgi) Loy Yang	Design Capacity: 150 kt /yr dry coal

Lurgi Briquette Gasification Plant Morwell

Produced 700,000 m³/d - 1/3 of Melbourne's town gas.

Morwell Briquette & Power Complex Commenced 1959, closed 2014

Capacity initially1.2 Mt/yr briquettes and 170 MW cogen power Gasification plant in background.

Binderless Brown Coal Briquetting

AusChar Briquette Carbonisation Plant 1970-2014

80,000 t/y of char from 180,000 t/y briquettes

WTA Steam Fluidised Bed Drying Plant, Loy Yang

Built by Lurgi with 150 kt/yr capacity Commenced 1992, closed 2003

Experience with Drying Brown Coal

Evaporative Drying		
Flash Mill Entrained flow	LV power stations	Up to 67 Mt/yr
Coal-in-tube rotary steam drum	Briquette factories	Up to 4 Mt/yr
Steam fluid bed (WTA)	Lurgi demo plant at LY	35 t/hr
Solar dried slurry	HRL demo at Hazelwood	2 kt/yr
Oil Slurry 'tempura' drying	NBCL Morwell, Kobe Steel UBC Kalimantan	1,000 t/d feed
Pressurised entrained flow	HRL IDGCC plant	8 t/hr
Dewatering		
Batch autoclave lump coal	Fleissner Drying PP at Melb Uni, Kawasaki DK process	?
HTD slurry	Variations by HRL, CRC, JGC, Exergen, Ignite	1-4 t/hr pilot plants
MTE hydraulic press	CRC at Loy Yang	15 t/hr pilot plant
MTE hydraulic press	CRC at Loy Yang	15 t/hr pilot plant

Rotary Steam Tube Dryer

Morwell Briquette Factory dryer.

Coal-in-tube type used for safety

HydroThermal Dewatering

HRL's HydroThermal Dewatering Pilot Plant

Capacity 1 t/h of raw coal at up to 325°C

Solar drying of brown coal slurries

Mechanical Thermal Expression

MTE 15 t/h Pilot Plant at Loy Yang, 2008

Gasification Experience with VBC

1956-1970	Moving bed gasification Commercial Lurgi pressurised steam oxygen plant at Morwell . Needed briquette feed as VBC coal too soft.	700,000 m ³ /day town gas
1997-1999	<i>Fluid bed gasification</i> HTW type at 10 MW IDGCC plant, HRL Morwell.	8 t/hr VBC
2004, 2008	Entrained flow gasification Trials at Freiberg for Monash Energy and others simulating Shell and Siemens gasification	1,500 t shipments of VBC samples

Note: Each of these processes needed to be adapted for the unique properties of Victorian brown coal

Brown Coal Liquefaction

- The \$1 billion 150 t/d (feed coal) NEDO/NBCL/BCLV pilot plant in Morwell successfully demonstrated direct hydrogenation coal-to-oil technology on Victorian brown coal.
- As well as being a technical success the project developed a strong bond between the Japanese families and the Latrobe Valley community which still persists.
- Further development in Japan with smaller scale pilot plants has improved the yield and economics but the current low oil prices are again a deterrent.
- Other technologies evaluated include the indirect route of gasification and synthesis, and low temperature pyrolysis to maximise tar yield.

NEDO/NBCL Brown Coal Liquefaction Pilot Plant Morwell 1982-1990

150 t/d raw coal

NEDO/NBCL Brown Coal Liquefaction Process

Other Applications

- Activated carbon production technically feasible but commercial hurdles to clear.
- Humate based fertilisers and soil conditioners small commercial activity.
- Government (State & Commonwealth) announced in 2014 funding under the \$90m Advanced Lignite Demonstration Program for 3 new precommercial demonstration projects:
 - Ignite Energy Resources Cat HTR process to solid and liquid products
 - Coal Energy Australia (CEA) Pyrolysis to solid and liquid products.
 - Shanghai Electric Australia Power & Energy Development (SEAPED) briquetting for export
- Other Japanese projects for VBC are being studied with J-Coal support such as KHI hydrogen project.

Conclusions

- □ Victoria has over 90 years experience in commercial use of its brown coal
- □ There is 13,000 Mt of economic coal available for further developments
- Latrobe Valley brown coal is possibly the most thoroughly explored and best characterised coal resource in the world
- Extensive research and know how exists on how these coals behave in a wide range of processes and the impact of coal quality on performance
- □ The future development of the resource is likely to depend on the implementation of higher efficiency technologies to reduce the CO₂ generation and the application of CCS
- Promoters of new brown coal projects should make maximum use of the information and experience available on the quality of the coal they will be using and its potential performance in related processes.

THANK YOU

ALCOA's Anglesea Mine & Power Station (Commenced 1969 – Closed September 2015)

Mine Capacity: 1.1 Mt/yr Power Station 1x150 MW unit

Low Rank Coal Quality

Brown Coal Comparison – dry coal basis

